- Säure-Base-Titration (Phosphorsäure) -

Thema/Aufgabe:

Titration von Phosphorsäure

Theoretische Grundlagen der Analyse:

Die Protolyse mehrprotoniger Säuren erfolgt stufenweise.

Titriert man z.B. die dreibasige Orthophosphorsäure (H₃PO₄) mit einer Base, so entstehen nacheinander Dihydrogenphosphat, Hydrogenphosphat und Phosphat:

$$H_3PO_4 + OH^- \implies H_2PO_4^- + H_2O$$

 $H_2PO_4^- + OH^- \implies HPO_4^{2-} + H_2O$
 $HPO_4^{2-} + OH^- \implies PO_4^{3-} + H_2O$

Jede dieser Stufen hat ihre charakteristsiche/tabellierte Säurekonstante. Diese betragen:

$$\begin{split} K_{S_1} &= 7, 5 \cdot 10^{-3} & \Rightarrow p K_{S_1} = 2, 12 \\ K_{S_2} &= 6, 2 \cdot 10^{-8} & \Rightarrow p K_{S_2} = 7, 20 \\ K_{S_3} &= 4, 4 \cdot 10^{-13} & \Rightarrow p K_{S_3} = 12, 36. \end{split}$$

Die Wasserstoffionenkonzentration in der Lösung eines der Phosphate erhält man als geometrisches Mittel der jeweiligen Säurekonstanten bzw. den pH-Wert als arithmetisches Mittel der jeweiligen pKS-Werte. Dazu verwende ich folgend die Näherungsgleichungen für Ampholyte.

Somit weist die Lösungen des Dihydrogenphosphats eine H_3O^+ -Ionenkonzentration von $2, 16 \cdot 10^{-5} \text{mol/L}$, die des Hydrogenphosphat eine Konzentration von $1, 65 \cdot 10^{-10} \text{mol/L}$.

Nun ist es nur dann möglich die verschiedenen Äquivalenzpunkte sicher zu erkennen, wenn es ausreichend große pH-Sprünge an diesen Stellen gibt und die Äquivalenzpunkte weit genug voneinander entfernt sind (ca. 4 Zehnerpotenzen in den K_S-Werten).

Bei der zu untersuchenden Orthophosphorsäure ist dies möglich und man kann diese stufenweise titrieren. Die dazu benötigten Indikatoren müssen so gewählt werden, dass deren Umschlagpunkt möglichst nah am Äquivalenzpunkt liegt.

Arbeitsvorschrift:

Am 1. Äquivalenzpunkt gilt:

$$H_3PO_4 + OH^- \rightleftharpoons H_2PO_4^- + H_2O$$
 (bei pH 4,5)

Indikator : Methylorange oder Bromkresolgrün

Drei Proben á 10mL werden möglichst unverdünnt mit der selbst hergestellten NaOH gegen 3 Tropfen des Indikators titriert. Zum Vergleich wird ein Lösung Natriumdihydrogenphosphat mit der gleichen Menge Indikator bereitgestellt.

Am zweiten Äquivalenzpunkt gilt folgende Reaktionsgleichung:

$$H_3PO_4 + 2OH^- \rightleftharpoons HPO_4^{2-} + 2H_2O$$
 (bei pH 9,7)

Indikator: Phenolphthalein oder Thymolphthalein

Bem.: Es wird bis zur vollst. Umsetzung des Indikators PPT titriert; zum Farbvergleich wird die gleiche Menge Indikator in das gleiche Volumen reinen Wassers gegeben. Bei Nutzung von Thymolphthalein wird bis zum gerade erkennbaren Blau titriert.

Entsorgung:

Die austritrierten Lösungen und die restliche Analysenlösung können dem Abwassernetz zugeführt werden.

Geräte/Chemikalien:

Stoff	Symbol	R-Sätze	S-Sätze
Bromkresolgrün	-	-	-
Thymolphthalein	-	-	-
NaOH	С	R 35	S 26-37/39-45
H_3PO_4	С	R 34	S 26-45

- Stativ + Klemme
- Bürette
- Maßkolben (100ml)
- Becherglas
- Erlenmeyerkolben
- Messpipette/Messzylinder
- Trichter/Filterpapier

Berechnungen:

Messwerte:

1. Äquivalenzpunkt:

1. Messung 8,60mL 2. Messung 8,65mL

3. Messung 8,60mL

Mittelwert 8,62mL

2. Äquivalenzpunkt:

1. Messung 17,25mL 2. Messung 17,20mL

3. Messung 17,30mL

Mittelwert 17,25mL

Berechnung des Gehalts an Phosphorsäure:

- molare Masse von Phosphorsäure: $M_{rel}(H_3PO_4) = 97,99g/mol$
- Konzentration der verwendeten Natronlauge: c(NaOH) = 0,129mol/L

Für den 1. Äquivalenzpunkt:

$$\begin{array}{lll} m_1(H_3PO_4) & = & V_1(NaOH) \cdot Titor(NaOH) \cdot f_1(H_3PO_4) \cdot 10 & f_1 = 9,799mg/mL \\ & = & 8,62mL \cdot 1,29 \cdot 9,799mg/mL \cdot 10 \\ & = & 1089,63mg & \\ \end{array}$$

Für den 2. Äquivalenzpunkt:

$$\begin{array}{lll} m_2(H_3PO_4) & = & V_2(NaOH) \cdot Titor(NaOH) \cdot f_2(H_3PO_4) \cdot 10 & f_2 = 4,8995mg/mL \\ & = & 17,25mL \cdot 1,29 \cdot 4,8995mg/mL \cdot 10 \\ & = & 1090,26mg & \\ \end{array}$$

Mittelwert der beiden Massen: $\overline{m} = 1089,95 \text{mg}$

 \Longrightarrow Somit befinden sich in der Probelösung
 $\underline{\mathbf{m}=1089,95\mathrm{mg}}$ Phosphorsäure

Datum/Unterschrift: